Theory and numerical methods for solving inverse and ill-posed problems
نویسندگان
چکیده
منابع مشابه
Ill-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملA Compressive Landweber Iteration for Solving Ill-Posed Inverse Problems
In this paper we shall be concerned with the construction of an adaptive Landweber iteration for solving linear ill-posed and inverse problems. Classical Landweber iteration schemes provide in combination with suitable regularization parameter rules order optimal regularization schemes. However, for many applications the implementation of Landweber’s method is numerically very intensive. Theref...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولGlobal Saturation of Regularization Methods for Inverse Ill-Posed Problems
In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by Neubauer [5]. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in t...
متن کاملSolving ill-posed inverse problems using iterative deep neural networks
We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inverse and Ill-posed Problems
سال: 2019
ISSN: 1569-3945,0928-0219
DOI: 10.1515/jiip-2019-5001